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The motion of a fluid under the action of the forces of mutual attraction 

of its particles in accordance with Newton’s law for the case in which 

the displacements are expressed as linear functions of the coordinates 

was first investigated by Dirichlet. He showed that for known initial 

conditions the fluid can move so that its free surface during the time 

of the motion remains the surface of an ellipsoid whose axes, generally 

speaking, change their magnitudes and directions with the passage of 
time. These investigations were continued by Dedekind, Riemann. Steklov 

and by a number of other authors (see the bibliography in Lamb [ 11 ). It 

has been shown, in particular, that in this case there can be rotations 

of the whole fluid as a single solid body about the smallest axis of a 

tri-axial ellipsoid (the Jacobi ellipsoid) or about the polar axis of an 

oblate ellipsoid (the Maclaurin ellipsoid), the existence of which in the 

general case was established considerably before the publication of the 

work of Dirichlet (1860). 

The question of the stability of the ellipsoidal figures of equilibrium 

of a rotating fluid attracted the steady attention of many investigators, 

starting with Liouville and Riemann. 

Riemann [ 21 investigated the stability of Yaclaurin and Jacobi 

ellipsoids with respect to initial displacements and velocities which 

satisfy the hypotheses of Dirichlet. Noting the analogy between the 

differential equations which define under some additional special assump- 

tions the semi-axes of a fluid ellipsoid as a function of time and the 

differential equations of the motion of a material point on some surface 

under the action of forces which possess a force potential, Riemann used 

a theorem of Lagrange concerning the minimum of this force potential as 

a oriterion for the stability of figures of equilibrium. Thus, he 

established that Jacobi ellipsoids are always stable and that Maclaurin 

ellipsoids are stable or unstable according to whether their eccentricities 

701 



702 Y. V. Runiantseu 

are less than or greater than 0.9528.. . In this connection, as is not 

difficult to see, by Riemann stability we mean stability with respect to 

the lengths of the fluid ellipsoid semi-axes and with respect to the 

rates of variation, apart from the Dirichlet condition that in the dis- 

turbed motion the moment of momentum and the vorticity have the same 

values as in the case of the figures of equilibrium. 

Thomson and Tait in their treatise [3] indicate (without proof) that 

all planetary ellipsoids of revolution are stable if the fluid for all 

time remains an ellipsoid of revolution. But if the condition that the 

fluid always keep the form of an ellipsoid is imposed, then Maclaurin 

ellipsoids are stable or unstable depending on whether their eccentric- 

ities are less than or greater than 0.8126..., and tri-axial ellipsoids 

are always stable. 

A rigorous definition of the stability of figures of equilibrium of a 

fluid as the stability of its form was first given by Liapunov [4] ; the 

theory, which he proved and which is a generalization of a theory of 

Raus, gives a sufficient condition for the stability of the form of 

equilibrium for a given moment of momentum of the fluid. 

Using this criterion Liapunov proved that ellipsoids of revolution are 

stable as long as their eccentricities remain less than 0.8126..., and 

that tri-axial ellipsoids are stable within certain narrow limits; the 
Jacobi ellipsoid of revolution is stable. For the particular case in which 

the surface of the fluid remains ellipsoidal, the upper limit of the 

eccentricities of stable Maclaurin ellipsoids remains just the same as in 

the general case, but Jacobi ellipsoids in this case are always stable. 

Thus, if we confine ourselves to the case of ellipsoidal disturbances, 

then the conclusions of Riemann, Thomson and Tait and Liapunov with 

respect to the stability of Jacobi ellipsoids coincide, hut with respect 

to the stability of Maclaurin ellipsoids they differ. 

In this connection the question arises: is it not possible to consider 

the problem of the stability of Maclaurin ellipsoids from some other point 

of view which differs from the one presented, and what will the results 

be? It is especially tempting to try to solve this problem of the stabil- 

ity in the sense of Liapunov and by the methods of the stability theory 

of Liapunov for a system with a finite number of degrees of freedom. 

The solution of this problem for the condition that the initial dis- 

turbances satisfy the Dirichlet hypotheses is given below. 

1. We will investigate an ideal homogeneous incompressible fluid, the 

particles of which are attracted to each other in accordance with 
Newton’s law, while the pressure on its free surface remains constant. 

For the indicated conditions the mass-center of the fluid moves 
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uniformly and rectilinearly; without loss of generality we will consider 

it to be stationary. We will take the mass-center for the origin of two 

rectangular systems of coordinates: a stationary system Ox,ylz, and a 

moving system Oxyz, wh ic moves coupled with the fluid about its mass- h 
center. We will denote by p, q, r the projections on the x-, y-, z-axes 

of the instantaneous angular velocity o of the moving system of co- 
ordinates relative to the stationary system. 

We shall write the Eulerian form of the equations of 
fluid in the moving axes: 

notion of the 

(1.1) 

l&e uX, uY, vF denote .the projections on the moving 

vector V, the fluid velocity relative to the coordinate 

axes of the 

p is the density of the fluid, p1 is the hy(~r~~~ic pressure, and U is 
the attraction potential. 

We will confine the investigation only to such motions of the fluid 

for which its free surface remains for all time an ellipsoid [ 2,5] 

(1.2) 

with variable axes n(t), b(t), c(t), and we will assume that 

Here oi(i = 1,231 is a function only of 
a harmonic function of the coordinates in a 

face (1.2). 

We obtain the boundary condition for the 
the kinetic condition for the free surface 

time t, and &r, y, t, t> is 
region r , the bounding sur- 

function q!4x, y, 2, t) from 

where u, u, o denote projections of the fluid velocity relative to the 
coordinate system Oxyz on the axes of the latter. l&is condition taking 
into account equations (1.3) takes the following form on the surface (1.2): 
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where for brevity we introduce the notation 

da 
a’=X, bL$, 

It is easy to see that the harmonic function 

;I 0' + ; c’ + 

+ (03 - 4 &g XY (1.4) 

dc 
c’ = -& 

Y (x, y, 2, t) = -+- ($ x2 + ; ya + $22 ) + !&$ (p - wl) yz + 

+ ~(9-~2,52+~(r-%) xy (1.5) 

satisfies condition (1.4); at the same time a(t), b(t), c(t) must satisfy 
the equation 

$_+$‘+$-_o (1.6) 

which appears as a result of the incompressibility equation. 

Taking into account (1.5) th e equalities (1.3) take the following form: 

v, =;xi- 
(a2 - b?) r - 2n%o3 

a2 + 0” 

y + (c” - a2) 9 + 2a20z 
aq -----2 

v 
Y 

= KY+ (b2-c2)p-2b2m, 
b b2 + c2 

z + (a2 - b2) r + 2b%.1~ 
a? + b’ J (1.7) 

v I = .“Iz + (c2--‘)9--2c2~2_ Tc+ (b2-~;;p$ckr, y 
C 9 + a2 

To determine the functions oi(t) we will make use of the lielmholtz 
vortex equation 

where R = rot v in the case under consideration has the following pro- 

jections on the moving axes: 

sz, = 201, q/ = 202, C‘& = 2W3 

Taking into account formulas (1.71, we write the Helmholtz equations 
in the moving axes in the form 

(1.8) 
d w 2a 2n 2a (c2- b”) 

-- _ --. 
dt a aa + b2 

rw, _t- ___ 
aa + ca 9% + (a2 + $.) (a2 + b2) ')3')3 == ' 

d a 
$$i- Pm3 + Tyb 7 ‘% + 

2h (a2 -- c2) 
--- - 
dt b (a’J + bz) (bz + c2) 

(llgW1 =: 0 

d 0s 2c _--- 
dt c ca + aa 901 + J-&- ycr)2 + (b;;‘f;);;~“;‘$, W1W := o 
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To construct differential equations for p(t), q(t), ,rtt) we will make 

use of a theory about the moment of dents of the system, according to 

which we have 

d~+qG,-rG,=O, d&+rG,-pGz=O f$ + pG, - qG, = 0 (l-9) 

Here Gx, G , G denote the projections on the coordinate axes n, y, z 

of the momentYof iomentum of the fluid mass relative to the point 0. 

Taking into account the equalities (1.7), it is easy to find 

G=A,p+ 40~ G, = &q + Bzwsr G, =cC,r + c$0, (1.10) 

where for brevity we introduce the following notation: 

A 
1 

= M_ (b2- c2P _ M (aa- b2)2 

5 b2 -+- c’J ’ 
B, = $_ fc2 - “)’ 

5 ca + as ' 
c 

I- 5 aa+ ba (1.11) 

A& b;2$CI.’ B&$&, 
c _ 4M azbs 

2-T- 

and M = 4'3 ~7p abc is the fluid mass. 

We will finally formulate the differential equations for a,(t), b(t), 
c(t). It is easy to see [5] that in the case under consideration the 

attraction potential for the interior points is 

where 

f is the constant of attraction; without loss of generality we will 

further consider f = 1. 

Substituting in equations (1.1) the right-hand side of the equalities 

(1.7) for tiz, v , it and takl'ng into account equations (1.8) and (1.9), 

and also (1.12): we'obtain 

(P$w,)z+ +~+~~o, (Q+wy)y+.Jfg -0 (R+w,)z+$+O 

(2.13) 

where ux, w , wz are quantities which do not depend on the coordinates 

of the flui particles: -x 
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a" 
--$$$*(a2 + 3C2)q2- $$$(U2 + 3/_/2)r" -I_ 
a (1.14) 

4 (a2 - cz)cz r, (a2 - b2)bz 
+ (a2 + c2)2 qwz+ (a2 +_ b2j2 

4a2b2 
r"3- (,B+b2)2%' - 41;2;)26b2 

b” 
-~- - $$ (b2 + 3a2)r2- $j$ b (1/Z + 32) p2 + 

+ 
4(62- ds) a2 

(aa + b2)2 “k3+ 
4 (62 - ~2) c2 

(b2 + ,2)2 P"'l- (b~~~)p 012- (a~~~b~2)2 6h2 

c n 

u’z = c- - && (c” -i- 3b2) p* - $$- (c” + 3a2) q2 + “;I; 5 ;;;2b2 p6>l+ 

, 4 (c2-a2)a2 4c2a2 4bV 
T dc2 _c .2)2 wz- (~2 + a2)2 02'- (62 +_ c?)2 "I2 

Integrating equations ( 1. X3), we find 

$ [(P + w,) 5’ + (Q + wy) y2 i- (R + w,) z2] + y - a (t) 

where a(t 1 is an arbitrary function of time. 

Wit on the free surface of the fluid the pressure pO, according to the 

condition specified, is constant, therefore, in order that this surface 
have the form of an ellipsoid (1.2) it is necessary and sufficient that 

an ellipsoid be coincident with a surface of constant pressure. Conse- 

quently, the function o(t) must te determined so that the surface of 

constant pressure coincides with the surface (1.2). Comparing coefficients, 

we obtain 

(P + w,) CL2 = (Q + WY) L2 = (3 -t IO,) cs = 20 (t) (1.15) 

In addition, the hydrodynamic pressure will Le determined by the 

formula 

PI - PO 

P 
= o(t) 

( 
12_+;_.;; 

> 
(1.16) 

Hence it follows that the function o(t) must not take negative values. 

From the relations (1.15) we find equations for a(t), b(t), c(t) : 

wp-g-P, w =‘2”-Q 
Y Lb2 ’ 

w,= ‘5-R (1.17) 

into the left-hand sides of which we must substitute in place of wx, 

UJ , 
Y 

wz the expressions according to (1.14). 

-Ihus, the problem of studying the motion of a fluid mass which has the 

form of an ellipsoid (1.2) with varying axes is reduced to the invest- 
igation of the ten equations (1.17), (l.h), (1.8) and (1.9) with the same 
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number of unknowns a, b, c, ml, w2, Uj’ P, (7, r, 0. 

This system of equations permits a series of first integrals. 

We multiply equations (1.17) by a‘a, b’b, c’c respectively and add 
them, we multiply the result by l/S pdr and integrate over the whole 

volume of the fluid; we add the resulting equation to the sum of the pro- 

ducts of equations (1.9) by p, 4, r respectively, whence taking into 

account equations (1.4) and (1.8)) we obtain the energy integral 

& (a’* + b’2 + c’~) + $ (Alp2 + B,q2 + Clr2 + A2w12 + B2w22 + C2%*) + 

+ W = const (1.18) 

where the potential energy of the system is 

IV- = + p ’ 
s 

Uds = - $ MH 

Mul.tiplying equations (1.9) b; C Ix, G , 
obtain an equation from which there fol K 

GZ respectively and adding, we 

ows immediately the integral ex- 

pressing the constancy of the moment of momentum of the system 

(&’ + -4,(4)2 + (&q + &‘42 + (C,r + c,@,)’ = COnSt (1.19) 

We now multiply equations (1.8) by al/a, y/b, 9/c respectively and 

add, we easily obtain the integral expressing the constancy of the vorti- 

city 

(4)a+ (?)a+ (:y = const (1.20) 

Finally, multiplying equation (1.4) by nbc, we obtain the integral 
expressing the constancy of the mass of the fluid 

nbc = const (1.21) 

2. ‘Ihe system of equations of motion of the fluid mass permits the 

particular solution 

a = ao, b = b,, c = co, a’=/I=c)=O 

p=q=o, r =_: 0 (01 = 02 = 0, Ir)s = 0, u = 00 (2.1) 

which describes a uniform rotation of all the fluid as a single solid 

body about the axis Oz with angul.ar velocity o. ‘Ihe constants a, b, c, 

w, o must here satisfy equations (1.17) which take the form 

2ao -- 02=+~p, -w~=~-Q. 0=260--R 
0 

CO2 

Hence we obtain 
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(P - w”) a02 = (Q - w2) bo2 = Rco2 (2.2) 

Investigation of these equations leads, as is well-known [ 61 , to the 
following conclusions: figures of equilibrium of a rotating fluid exist 

which have the form of ellipsoids of revolution (Maclaurin ellipsoids) 
when a0 = b, > c,, and of tri-axial ellipsoids (Jacobi ellipsoids) when 

the axis c is the smallest axis of the ellipsoid (1.2). 

If 0 < l/2( o+7fp 1 < 0.225.. . , two Maclaurin ellipsoids which 

differ in oblateness from each other correspond to each value of o. For 
1/2(0*/~fp) = 0.225... both ellipsoids of revolution coincide, reducing 

to one limiting Maclaurin ellipsoid. For 1/2(o*/nfp) > 0.225.. . 
ellipsoidal figures of equilibrium of a rotating fluid do not exist. 

In the case of tri-axial ellipsoids, if 0 < 1/2(o*/nfp) < 0.1871, 

for each value of o there correspond two identical Jacobi ellipsoids in 
which only the n- and y-axes are transposed. For l/2( o*/nfp) = 0.1871 

the axes a0 and b, become equal and the Jacobi ellipsoid turns into an 
ellipsoid of revolution E, which at the same time is also a Maclaurin 

ellipsoid. For l/2( w*/rf p) > 0.1871 tri-axial ellipsoids of equilibrium 

of a rotating fluid do not exist. 

‘lhe ellipsoid E, which belongs simultaneously to two series of figures 

of equilibrium, is a bifurcated ellipsoid. 

We shall pass now to the investigation of the stability of Maclaurin 
ellipsoids, restricting consideration only to disturbances which satisfy 
the Dirichlet hypotheses under which the free surface of the fluid remains 

an ellipsoid (1.21. 

It is natural to refer to such disturbances as ellipsoidal disturbances 
[ 51 ; for information on their figure of equilibrium the resulting motion 
of the fluid will be described by equations (1.171, (1.61, (1.8) and (1.9). 

For the stability of the figures of equilibrium, we will understand 
stability in the sense of Liapunov with respect to the variables a, b, c, 

a’, b’, c’, 01, q, 9, PI (I, r. 

And so we will put a0 = b, and we will assume for the undisturbed 
motion the particular solution (2.1) of the equations of motion. In the 
disturbed motion we will put 

a=a,+a, I)=a,+p, c=co+rr r,=o+E, w3=w+71 

and for the remaining variables we will keep the previous notation. Sub- 
stituting these quantities in equations (1.171, (1.6), (1.81, (1.9), we 
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obtain a system of equations for the disturbed fluid; we will not write 

down the latter equations explicitly. It is evident that the exact 

equations of the disturbed motion permit the following first integrals 

which correspond to the integrals (l.lgl-(1.21): 

Y* = &I2 (P” + q2”) + 24OA2O (PI -I- 402) + A202 (012 i- 027 + C202T2 + (2.3) 

+ *~c~~[a,(a+~)+aa+~~+aP1i2C*,wrl(C,+2c~~)+...=const 

vq = aoco (a + f) + Uo2T + aor (a + f, + coaf + afr = 0 

The dots here and below designate omitted terms of order greater than 

second; the index o indicates that the corresponding quantities must be 
computed for values of a = aOa 6 = b,, c = cD, CO = C 1o + Czo. We will 
eliminate the variable y from the first integrals V, = const and V3 = 
const, using the integral V,, = 0. Solving the latter equation for y, we 
obtain 

T - _ % 
( 
d -+ p - a= + aB + p2 

QO > 

-+. .*. 

and, substituting in the former, we will have, taking into account equa- 
tions (2.21, 

V; = A,, (p” -t q”) + Azo (($ + ~2~) -i- c20y2 + 2c2owri (1-k ‘+) + 
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We will consider the function 

where ‘a*w CS aw 
I 11 = 1 

t 
-- 

g + 3 act3 2-$30+ .32Ro$-302) 

A,, = ( $b - 2 $ aza -t f $Z)a-t -$ (R, $ - 2q 

As is seen, the expansion of the function V into a series begins with 

terms of second order which are quadratic forms of the variables a’, (3’, 

Y’I PI y, Q, 9; Q, fl, q. If the signs of the latter are dete~ined, the 

sign of the function V will be determined. Ilhe first tw of them are 

positive definite taking into consideration that in the case under con- 

sideration a0 > cO. We will find the conditions of positive definiteness 

for the quadratic forms of the variables Q, /3, 7. 

According to the Sylvester criterion 

Obviously,these inequalities can always be satisfied by choosing some 

positive value of the constant ,?I, if only the conditions 

A,, + &I + 4c& > 0, A,, - -41s > 0 (2.6) 

are fulfilled. 

Taking into account the designations of (1.11) and (2.5) and taking 

into consideration (1.12) and (2.2) we have 

A,, + A,, $- 4c,, 0” = 
a08 
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Because a0 > co for Maclaurin ellipsoids, then it is obvious that the 

first of the conditions (2.6) is always satisfied. We will consider the 

second of these inequalities. Performing the integration and dropping a 

positive factor, we reduce it to the form 

1 [Z (13 -I- 3Z2) - (3 -+ 1412 -t 3Z4) arc ct.g 11 > 0 

i 

quo” - co2 
~=&&-$s= &) -i&Y 

~ 
1 

(2.7) 

Here 1 is a quantity, the inverse of the second eccentricity of the 

ellipsoid (1.2); 6 is its first eccentricity. 

We will assume L 41 

and we find 

U (1) E 
l(13 + 312) 

3 + 141s + 314 - 
arc ctg 1 

du 16 (3 -j- 2%) (1 - 1%) 

- zz 71 + P) (3 -k 1411 + 314)2 dl 

Hence it is seen that as 1 increases from 0 to 1 the function u(Z) 

increases, reaching a maximum for 1 = 1, and for further increases in 1 
constantly decreases; in addition, u(0) = - n/2, u(m) = 0. 0n this basis 

we conclude that the equation 

I(13 k X?) - (3 -t_ 1412 -+ 31,‘) arc ctg 1 = 0 (2.8) 

has only one positive finite root 1, < 1, and that &en 1 > 2, the con- 

dition (2.7) is satisfied. 

Equation (2.8) is used, as is well-known [ 41, in determining the 

Maclaurin ellipsoid with which the limiting Jacobi ellipsoid coincides 
for 1/2(02/n +p) = 0.187. Ih e 
0.8126..., 

eccentricity of this ellipsoid is tO = 
and the root of equation (2.8) is I, = 0.717. 

‘Thus, for Maclaurin ellipsoids with eccentricities c > co the quadratic 

form of the variahlcs p, q, ti$, w , a’, /?‘, y’, a, p, q, with which the 
series expansion of the function 12.4) begins, is positive definite. 

Among the terms of higher order in the expression of the function V 
there are, however, terms which, in addition to the variables a, /3, q, 

depend on the vari&le 6 as well. 

Such terms are of the lowest order, as is easily seen in the following 

Adding and subtracting in the square brackets squared terms of a, /I, 

7 we obtain 
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If the constant k is chosen so that k > 202/a~ + 1, then the quadratic 

form of the variables (, 71, a, ft, which are in the square brackets, will 

be positive definite. And now it is obvious that the function (2.4) will 

be a positive definite function with respect to the variables a’, It’, 
‘ 

Y , a, P, Pt (I# yF 9’ 9 in a sufficiently small neighborhood of the 

zero values of these variables, if the quadratic part of the function V 
is positive definite. 

Consequently, the stability in the sense of Liapunov with respect to 

the variables a, b, a’, b’, c’, p, q, wl, m2, 9 of Maclaurin ellipsoids 

with eccentricities c < fO have been proved for the condition that the 

initial disturbances satisfy the Dirichlet hypotheses. 

From the stability with respect to the indicated variables, because 

of the existence of first integrals of the equations of the disturbed 

motion of the form VII = const, and also V, = const or V = eonst, we can 

draw conclusions about the stability of Maclaurin ellipkids with 

eccentricities 6 < co with respec.t to the variables c and r as well. 

We note that if an additional condition be imposed so that the form 

of the fluid always remained an ellipsoid of revolution, then all Maclaurin 
ellipsoids will be stable figures of the rotating fluid. Indeed, in this 

case it is necessary to put a = /? and in place of the quadratic form of 

the variables a, /I, 3 entering into the expression for the function V 
which was considered earlier we will have a quadratic form of the vari- 

ables a and q of the form 

The conditions of positive definiteness of this quadratic expression 

have the forms: 

and a choice of the positive constant p is always possible so that these 

conditions will be satisfied if only the first of the inequalities (2.6) 
is fulfilled. The latter, as was established earlier, always is satisfied 
for Maclaurin ellipsoids, which also proves the stated assertion. 

3. We will consider the particular solution of the equations of nation 

a = a,, b = b,, c = co, (g=b’E.zc’zO, p=q zz_T=u 

01 = 02 = 0, 03 = a, a = a() (3.1) 
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which describe the motion of a fluid with velocities 

2a02 f2 
v,=------- 

a$ + bozY’ 

2b02 R 
vy = -5, 

a0 + b. 
V* = 0 (3*21 

moreover, the surface (1.2) remains stationary, Equations (1.15) in this 

case take the forms 

and transform into equations (2.2) if the notation 

is introduced. 

in 

Thus, we obtain [S] a series of Dedekind ellipsoids which are identical 

external form with the series of Jacobi ellipsoids. 

Gbviously, for 

2a02b&12 
- 0.1871 

?sfp (a0” + b0a)2 - 

the semi-axes of the ellipsoid (1.2) are equal, the fluid moves as a 

single solid body rotating about the z-axis with angular velocity Q, and 

the Dedekind ellipsoid turns into the bifurcated ellipsoid B which be- 

longs simultaneously to the series of Maclaurin and Jacobi ellipsoids. 

We will investigate the stability of the latter, supposing in the dis- 

turbed motion 

5 = a0 -+- a, b = 50 + P, c=co+r, f%=Qt-71 

The equations of the disturbed motion permit integrals of the form 

(2.31, the first two of which after replacing y in the first by a and fl 

with the help of the integral V4 = 0 can be written in the form 

v; = A,, (p" + .q2) t A,, (012 -i- 02) -t C,,r~ -t- 2CzoQq (1 t y) -I- 

+ T{dZ + p’s + 7’2 _1- 4@a,(cc -i-p>- LP(a2 -+ ?" - 4&P)+ 

vz = Alo (p” + q’) + 2A1,& (p“j’1 + q%) + Am2 (Qh2 -+ %I*) + czo2T2 + 

t2$ C20Q2[2~o(~ -t p)+ s~tp].+- 2C,,s2~j(C,, + 2C,, '2)-i- . . . = const 
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and the two others keep the same form with o replaced by Q. 

We will construct a function of the form 

(3.3) 

which in terms of the smallest dimension differs from the function (2.4) 

in the replacement of o by R and of the coefficients (2.5) by the follow- 

ing: 

The quadratic part of the function (3.3) will be positive definite 

with respect to the variables a /3, a', I?', y', p, q, aI, o , 77 if the 
conditions (2.6) are fulfilled. Comparing the coefficients t2.5) and 

(3.41, we can convince ourselves that the latter are obtained from the 

former upon replacing w by Cl and adding to the corresponding items 

2/5 MCI* and - 2/5M02. Therefore, the first of the equations (2.6) keeps 

just the same form, which also is in n02, and is satisfied, and the 

second in the case under consideration reduces to the form 

LX> 0 

and is also satisfied. Tn the same way the stability of the bifurcated 

ellipsoid E under ellipsoidal disturbances with respect to the variables 

p, 4, a,_, 02, 9, a, b, c, a', b', c‘ can be proved to a first approxima- 

tion. 
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